

[ABAD NETWORK FOR TRAINING]

Introduction to Machine Learning

Definition and Scope of machine learning.

Applications of machine learning

Types of machine learning: supervised learning, unsupervised learning, reinforcement learning.

Components of a machine learning system

Overview of tools and libraries such as Python, Jupyter Notebooks, etc...

Setting up the environment and installing necessary libraries.

Mathematics and Statistics for Machine Learning

Overview of Mathematics in Machine Learning

Linear Algebra

Descriptive Statistics

Probability Concepts

Sampling and Central Limit Theorem

Statistical Inference

Linear Regression and Correlation

Regularization

Derivative optimization in machine learning - Gradient Descent

Python language

Introduction to Python and environment (Anaconda, etc...)

Basic Syntax and Data Types

Data Structures (Lists, Tuples, Dictionaries, Sets)

Control Structures and Functions (Conditional statements, Looping constructs, Functions)

OOP

Working with Libraries (Pandas, NumPy, Matplotlib, etc...)

File Handling and Exception Handling

Data Preprocessing

Data Collection

Exploratory Data Analysis

Data Cleaning and Feature Scaling

Supervised Learning

Regression

- Concept of regression.
- Linear Regression algorithms such as (Simple and Multiple Linear Regression, SVR, Random Forest Regression, etc...)
- Implementing linear regression in Python.
- Evaluating Regression Models Performance
- Regression Model Selection

Gradient descent

Overfitting - Underfitting

Classification

- Concept of Classification .
- Classification algorithms such as (Logistic Regression ,k-NN, SVM ,Naive Bayes ,Decision Trees, Random Forest, etc...)
- Implementing classification algorithms in Python.
- Evaluating Classification Models Performance
- Classification Model Selection

Unsupervised Learning

Clustering

- Concept of clustering.
- Clustering algorithms such as (k-Means, Hierarchical Clustering, etc...)
- Implementing clustering in Python.
- Evaluating Clustering Models Performance
- Clustering Model Selection

Dimensionality Reduction

- Concept of dimensionality reduction.
- Dimensionality reduction algorithms such as (PCA, LDA, etc...)
- Implementing dimensionality reduction in Python.
- Evaluating Dimensionality Reduction Models Performance

Reinforcement Learning

Concept of Reinforcement Learning.

Upper Confidence Bound (UCB)

Thompson Sampling

Evaluating Models Performance

Model Selection & Boosting

Model Selection

- Bias-Variance Tradeoff
- k-Fold Cross Validation
- Grid Search

Bagging BootStrap(XGBoost, Ada Boost, etc..)

Model Validation and Evaluation

Model Validation Techniques

- Splitting data into training and testing sets.
- Cross-validation techniques.

Model Evaluation Metrics

- Accuracy, precision, recall, F1 score.
- Using Python libraries to evaluate model performance.

Practical Projects and Model Deployment

Practical Machine Learning Projects

- Hands-on projects using real-world datasets.
- Building a model from start to finish.
- Model Deployment